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We recorded sound-evoked activity from 19 LSO neurons. The LSO neurons were identified by their location in relation to Bregma, the dorsal surface of the brain and also to the location of the neighbouring MNTB (3 cells); and more importantly by their excitation in response to ipsilateral acoustic stimulation and
inhibition in response to contralateral stimulation (El cells). All EI LSO cells were responsive to classical ILD with differing ILD<, values. In addition to this rate-encoding of sound level, we also asked whether LSO cells are suited for temporal processing. Since after detailed measurements of the frequency-response

areas we found neurons tuned to low and high sound frequencies ranging from 1.8 — 17,9 kHz. While the low CF cells may respond to the fine structure of pure tones, the high CF cell will not. Therefore we tested a novel stimulus paradigm that allows to change the frequency of the pulse train independently of the
envelope and found that LSO neurons responed with lower firing rates but higher temporal precision to steeper envelopes. This suggests that LSO cells independently of their CF tuning and independently of the base pulse stimulus of the stimulation train respond with increasing temporal precision to steeper
Fig. 2: LSO inputs and model El neuron (from Brughera et al. 2020). envelopes.
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