

Cortical and white matter myelin contents are linked in newborns

Inferior longitudinal fasciculus

Stephanie Zika^{a,b}, Kelly Chang^{c,d}, John Kruper^{c,d}, Altan Orhon^{c,d}, Ariel Rokem^{c,d}, Mareike Grotheer^{a,b}

^aDepartment of Psychology, Philipps-Universität Marburg ^bCenter for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus Liebig Universität Giessen; ^cDepartment of Psychology, University of Washington, Seattle; ^deScience Institute, University of Washington, Seattle

Introduction

Myelin \rightarrow membrane that encases axons and provides electrical insulation and metabolic support (Simons & Nave, 2015)

Mainly localized in white matter, but grey matter also contains myelinated axons (Timmler & Simons, 2019)

Hypothesis

During infancy, white matter myelination is linked to the myelination of the cortex, so that the

Methods

2

Data of n = 279 infants collected by the Developing Human Connectome project (dHCP)

Bundle identification done with pyBabyAFQ (Grotheer et al., 2022) $T1w/T2w \rightarrow$ correlates with quantitative measure of myelin in newborns

T1w/T2w of white matter bundles correlates with T1w/T2w of their cortical targets

Results

3

									Lanyuaye Scores			
AFL	ATRL 🔵	CCL 🔴	CSL 🛑	FcMa 🛑	IFOFL 🛑	ILFL 🛑	MLFL 🛑	ORL 🛑	SLFL 🔴	UNCL 🔵	VOFL 🛑	pARCL
AFR	ATRR 🛑	CCR 🔴	CSR 🔴	FcMi 🔵	IFOFR 🛑	ILFR 🛑	MLFR 🛑	ORR 🛑	SLFR 🔴	UNCR 🔵	VOFR	pARCR

Figure 1. (A) Relationship between T1w/T2w of white matter (WM) tracts and their respective gray matter (GM) targets ($r^2 = 0.55$, p = 1.45e⁻⁵). Each dot is a tract, averaged across all participants . (B) Relationship between the rate of change (slope) of T1w/T2w along white matter (WM) tracts and their gray matter (GM) targets (r² = 0.49, p = 6.28e⁻⁵). The slope indicates the increase in T1w/T2w values with infants' age in weeks), each dot is a tract. (C) Relationship between the Language subscale of the Bayley-III and T1w/T2w in the correlation between T1w/T2w in gray and white matter in each individual subject (r²=0.02; p-value= 0.04). Abbreviations: L=left hemisphere R=right hemisphere, AF=arcuate fasciculus, ATR=anterior thalamic radiation, CC=cingulum cingulate, CS=corticospinal tract, MLF=middle longitudinal fasciculus, ILF=inferior longitudinal fasciculus, OR=optic radiation, UNC=uncinate fasciculus, SLF=superior longitudinal fasciculus, VOF=vertical occipital fasciculus, IFOF=inferior frontal occipital fasciculus, FcMi=forceps major, pARC=posterior arcuate fasciculus

Figure 2. Examples of the tracts identified with pyBabyAFQ in one example infant scanned at 40 weeks after gestation (time between birth and scan: 6 days). The yellow dots represent the cortical endpoints of the respective tracts. Purple: inferior frontal occipital fasciculus; Orange: corticospinal tract.

Conclusion

T1w/T2w in white-matter tracts and their cortical targets is highly correlated — both in absolute levels and developmental change — with the corticospinal tract showing the strongest

activity-dependent

mechanisms

common metabolic and microenvironmental factors

"vocabulary explosion" at 17 to 18 months

effect.

Individual differences predict linguistic proficiency, highlighting coordinated white-matter-cortex maturation as a substrate for language ability.

Simons M, Nave KA. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb Perspect Biol. 2015 Jun 22;8(1):a020479. doi: 10.1101/cshperspect.a020479. PMID: 26101081; PMCID: PMC4691794.

Timmler, S, Simons, M. Grey matter myelination. Glia. 2019; 67: 2063–2070. https://doi.org/10.1002/glia.23614PMID: 24744380; PMCID: PMC4122120.

Soun JE, Liu MZ, Cauley KA, Grinband J. Evaluation of neonatal brain myelination using the T1- and T2weighted MRI ratio. J Magn Reson Imaging. 2017 Sep;46(3):690–696. doi: 10.1002/jmri.25570. Epub 2016 Dec 26. PMID: 28019046.

Grotheer, M., Rosenke, M., Wu, H. et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat Commun 13, 997 (2022). https://doi.org/10.1038/s41467-022-28326-4