

Beyond Diagnosis: A Longitudinal, Better-Than-Expected Approach to the Neural Correlates of Resilience

Vincent Hammes^{1,2}, Katharina Brosch^{1,2,3}, Paula Usemann^{1,2}, Friederike David^{1,4}, Frederike Stein^{1,2}, Florian Thomas-Odenthal^{1,2}, Lea Teutenberg^{1,2}, Susanne Meinert⁵, Janik Goltermann⁵, Kira Flinkenflügel⁵, Julia Hubbert⁵, Tiana Borgers⁵, Judith Krieger⁵, Elisabeth Leehr⁵, Linda Bonnekoh^{5,6}, Dominik Grotegerd⁵, Tim Hahn⁵, Benjamin Straube^{1,2}, Hamidreza Jamalabadi^{1,2}, Udo Dannlowski⁴, Igor Nenadić^{1,2}, Robert Miller⁸, Andreas Jansen^{1,2,9}, Tilo Kircher^{1,2} & Nina Alexander^{1,2}

¹ Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany, ² Center for Mind, Brain and Behavior, University of Marburg, Germany, ³ Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA, ⁴ Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany, ⁵ Institute of Translational Psychiatry, University of Münster, Germany, ⁶ Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany, ⁷ Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany, ⁸ Psychological Methodology, Psychological University Berlin, Germany, ⁹ Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg, Germany

BACKGROUND

Resilience constitutes the ability to adapt positively to adversity and is shaped by the interplay of **multiple biological and environmental risk** and protective factors. Consequently, a positive and **resilient outcome** needs to be operationalized with respect to **interindividual differences** in risk, diathesis and protective factors.

Resilience has been associated with **specific morphometric alterations** in gray matter volume (GMV) and cortical thickness:

a) larger GMV in the medial prefrontal cortex (mPFC) and hippocampi, and

b) greater cortical thickness of the mPFC¹⁻⁵.

This study extends previous research by addressing the following limitations:

multi-system risk	
Previous studies largely	
focus on single risk factors	

multiple time points.

resilience operationalization

Previous studies are based on diagnosis (dichotomous categorization of healthy vs. diagnosis)

METHODS

Brain Morphometry

Groups were compared regarding differences in **GMV** and **cortical thickness** using voxel-based and surface-based analyses. Additionally, **residual scores** were used to **predict GMV** and **cortical thickness at T1 and T2** (regression analysis, full sample).

Based on prior studies, confirmatory **region-of-interest (ROI)** analyses and exploratory **whole-brain** analyses were conducted (ROIs: hippocampus, mPFC). **Sensitivity analyses** were conducted with lifetime diagnosis (MDD) as covariate.

RESULTS

Clinical Characteristics

Table 2As ExpectedResilienceVulnerabilityGroup(n=200)(n=208)(n=251)comparison

Resilience is a mental health outcome that does not exclude psychopathological symptoms but is simply better than expected, given one's individual cumulative risk!

Aims of this study

 A) Operationalize resilience as a "better-than-expected" outcome in depressive symptom severity relative to individual cumulative risk.

B) Investigate brain structural correlates of resilience over

METHODS

Sample

N=1804 depressed (MDD, SKID I) and **healthy** (HC) central-european individuals from the FOR2107 cohort⁶. Age 18-65, Ø 35.2 years, 65% female.

Risk and protective factors						
Table 1	Assessment	Risk	Protective			
-amilial risk (affective/psychotic disorder)	Self-report	Х				

Age	33.1 (12.2)	34.8 (12.5)	35.4 (13.6)	<i>p</i> =0.142
Sex (<i>n</i> female, %)	129 (65%)	131 (66%)	167 (67%)	<i>p</i> =0.726
MDD diagnosis (<i>n</i> , %)	59 (30%)	128 (62%)	232 (92%)	<i>p</i> <0.001 ^a
Remission (in MDD, acute/partial/full)	18 / 12 / 41	19 / 41 / 68	181 / 37 / 13	<i>p</i> <0.001 ^b
Duration of illness (months)	33.0 (44.6)	33.0 (41.3)	50.5 (67.2)	<i>p</i> =0.016 [°]
HAM-D sum score	2.8 (3.3)	1.5 (1.8)	16.3 (4.5)	<i>p</i> <0.001 ^d
HAM-D score predicted	2.8 (3.2)	7.2 (2.0)	8.3 (3.2)	<i>p</i> <0.001 [°]
GAF score	85.1 (14.2)	78.1 (14.6)	57.9 (12.9)	<i>p</i> <0.001 ^f
RS-25 sum score	139.2 (22.3)	113.7 (22.9)	102.9 (26.9)	<i>p</i> <0.001 ^f

^a association with As Expected and Vulnerability; ^b association with all levels in Resilience and Vulnerability, and with full and acute remission in As Expected; ^c Vulnerability > Resilience; ^d Vulnerability > Resilience, As Expected and As Expected > Resilience, ^e Vulnerability > Resilience, As Expected and Resilience > As Expected; ^f As Expected > Resilience, Vulnerability and Resilience > Vulnerability.

Brain Morphometry: Cross-Sectional (T1)

Regression Analyses (N=1804)

• No significant association between residual score (=resilience) and GMV or cortical thickness across all models (ROI and whole-brain, sensitivity analyses).

Group comparisons (N=659)

 No differences in GMV or cortical thickness between groups across all models (ROI and whole-brain, sensitivity analyses).

Brain Morphometry: Longitudinal (T2)

Regression Analyses (N=808)

- Higher resilience at T1 predicted lower GMV in the left inferior orbitofrontal gyrus at T2 (IIOFG, k=172, p_{FWE}=0.006, x/y/z=-48/20/-12).
- Similar in ROI and whole-brain design, comparable results in sensitivity analyses.

Intelligence	MWI-B	Х	Х
Trait extraversion	NEO-FFI	Х	Х
Trait neuroticism	NEO-FFI	Х	Х
Trait openess	NEO-FFI	Х	Х
Trait agreeableness	NEO-FFI	Х	Х
Trait conscientiousness	NEO-FFI	Х	Х
Attachment style	RSQ	Х	Х
Childhood trauma	CTQ, ACE	Х	
Stressful life events (positive/negative)	LEQ	Х	Х
Perceived stress	PSS	Х	Х
Immigration	Self-report	Х	
Social Support	F-SozU, Self-report	Х	Х
Education	Self-report	Х	Х
Income	Self-report	Х	Х

Statistical Framework

Using the Hamilton Depression Rating Scale (HAM-D) as a dimensional outcome measure, we applied **ridge-regularized regression** analysis to **predict symptom severity** by multiple risk and protective factors (Table 1) in the full sample of N=1804 at T1 and 2-year follow-up (T2; N=808).

Model fit T1: regularization parameter $\lambda_{SD} = 4.1$, **deviance ratio of 51.4%** (refers to the explained variance of the model). Model fit T2: $\lambda_{SD} = 5.7$, **deviance ratio of 44.2%**. Residual scores showed moderate stability over time (*r*=0.31, *p*<0.001).

Residual scores reflect the individual deviation of actual and predicted HAM-D score.

Resilience at T1 did not predict cortical thickness at T2.

Group comparisons (N=296)

- GMV and cortical thickness at T2 from individuals of extreme groups at T1 was compared (*n*=95 *Resilience*, *n*=97 *Vulnerability*, *n*=104 *As Expected*).
- Resilience < Vulnerability: lower GMV in a small cluster within the IIOFG at T2, similar to regression analysis (k=32, p_{FWE}=0.023, x/y/z=-48/20/-14).

DISCUSSION

- This study examined cross-sectional and longitudinal brain structural correlates of resilience beyond diagnostic categories, using a data-driven "better-than-expected" approach in a large adult sample.
- We did not replicate previous findings of larger GMV or cortical thickness in the hippocampus or mPFC associated with resilience¹⁻⁵. Cross-sectionally, no structural differences related to resilience were observed. Longitudinally, however, resilience at T1 predicted lower GMV in the left inferior orbitofrontal gyrus (IIOFG) at T2.
- These longitudinal findings support the concept of "skin-deep resilience"—adaptive

Thresholding at the standard residual error (SD = 4.18), we identified n=208 resilient (-1SD, better-than-expected) and n=251 vulnerable (+1SD, worse-than-expected) individuals at T1, alongside n=200 as-expected individuals (minimal residuals).

functioning under adversity that may be accompanied by biological cost⁷.

 Interpretation remains limited by the bidirectional relationship between depression and resilience, particularly regarding the timing of HAM-D assessments.

CONCLUSION

This is the first study to investigate brain structural correlates of resilience (beyond diagnosis) employing a residual approach in a large, heterogeneous sample.

While resilience to specific risk factors might be associated with greater GMV or cortical thickness, resilience to cumulative risk in a design that accounts for diagnosis-based effects did not present a neural signature cross-sectionally, but rather predicted smaller GMV in the IIOFG in a 2-year follow-up.

References

¹Amico et al. (2011). "Structural MRI Correlates for Vulnerability and Resilience to Major Depressive Disorder". Journal of Psychiatry & Neuroscience. ²Bolsinger et al. (2018). "Neuroimaging Correlates of Resilience to Traumatic Events—A Comprehensive Review". Frontiers in Psychiatry. ³Burt et al. (2016). "Structural Brain Correlates of Adolescent Resilience". Journal of Child Psychology and Psychiatry. ⁴Moreno-López et al. (2020). "The Resilient Emotional Brain: A Scoping Review of the Medial Prefrontal Cortex and Limbic Structure and Function in Resilient Adults With a History of Childhood Maltreatment". Biological Psychiatry: Cognitive Neuroscience and Neuroscience and Scoping Review of the Medial Prefrontal Cortex and Limbic Structure and Function in Resilient Adults With a History of Childhood Maltreatment". Biological Psychiatry: Cognitive Neuroscience and Neuroscience and Adolescents with Major Depression Based on Brain Scans from 20 Cohorts Working Group". Molecular Psychiatry. ⁶ Kircher et al. (2019). "Neurobiology of the major psychoses: a translational perspective on brain structure and function—the FOR2107 consortium". European archives of psychiatry and clinical neuroscience. ⁷ Brody et al. (2013). "Is Resilience Only Skin Deep? Rural African Americans' Preadolescent Socioeconomic Status-Related Risk and Competence and Age 19 Psychological Adjustment and Allostatic Load". Psychological Science. Contact: Vincent Hammes, M.Sc., University of Marburg, vincent.hammes@uni-marburg.de